On Lebesgue-Fejer-Steinhaus Theorem
pdf (English)

როგორ უნდა ციტირება

Bakuridze, M., & Tarieladze, V. (2026). On Lebesgue-Fejer-Steinhaus Theorem. საერთაშორისო სამეცნიერო - პრაქტიკული კონფერენცია „თანამედროვე გამოწვევები და მიღწევები ინფორმაციულ და საკომუნიკაციო ტექნოლოგიებში" შრომები, 4, 223-225. https://papers.4science.ge/index.php/mcaaict/article/view/411

ანოტაცია

In this survey, dedicated to 150-th birthday anniversary of Henri Leon Lebesgue (June 28, 1875 - July 26, 1941), in particular, we plan to demonstrate that the name ”Lebesgue-Fejer-Steinhaus theorem” is justified for the following result:

Theorem. There exists a continuous function whose Fourier series converges point-wise, but not uniformly.

At the end we formulate a conjecture related with this theorem.

pdf (English)

წყაროები

Mzevinar Bakuridze, Some classes of functions and the question of convergence and summability of their Fourier series. Candidate Dissertation (in Georgian), Ivane Javakhishvili Tbilisi State University, November 29, 1996.

Mzevinar Bakuridze, Vaja Tarieladze, On Fejer-Steinhaus Theorem. Book of Abstracts of IX International Conference of the Georgian Mathe- matical Union Dedicated to 100-th Anniversary of Ivane Javakhishvili Tbilisi State University, Batumi - Tbilisi, September 3 - 8, p. 81. 2018

Bari, N.K. Trigonometric series (in Russian), Moscow, 1961.

Leopold Fejer, Sur les singularites de la serie de Fourier des fonc?tions continues. Annales scientifiques de l’Ecole Normale Superieure 28 (1911), 63-104.

G. M. Fihtengoltz, Course of Differential and Integral Calculus, vol. III (in Russian), ”Nauka”, Moscow 1969.

Lebesgue, H. Sur la divergence et la convergence non-uniforme des series de Fourier. (French) JFM 36.0331.02 C. R. 141, 875-877 (1906).

Lebesgue, H. Lecons sur les scries trigonometriques. Paris, Gautier- Villars, 1906, 128 p.

Hugo Steinhaus, Sur la convergence nonuniforme des series de Fourier, Publ. l’Ac. de Cracovie (1913), 145-160.

L. V. Zhizhiashvili, Some problems in the theory of simple and multiple trigonometric and orthogonal series, Uspekhi Mat. Nauk, 1973, Volume 28, Issue 2(170), 65-119.

Antony Zygmund, Trigonometric series, Third Edition, Volumes I & II Combined, with a foreward by Robert Fefferman. Cambridge Mathetmat- ical library. Cambridge University Press, 2002.