IMPACT OF THERMAL TREATMENT ON 10 B 4 C- WORK-PIECE OBTAINED BY HOT COMPRESSION
DOI:
https://doi.org/10.52340/caat.2019.21.1.61Abstract
Goal
. The research aims to study impact of thermal treatment of boron carbide work-pieces enriched with isotope Bor-10 on physical and mechanical properties of work-pieces.
Method
. To receive ingots we used hot-compression method in vacuum at 2100°C temperature and 30 MPa pressure. Samples were thermally treated at the conditions of 1800°C and 10 -4 Pa pressure. Optic and raster microscopic study was carried out. Physical-mechanical properties of ceramics were investigated.
Result
. Effect of thermal treatment on boron carbide’s mechanical workability, crack-resistance, hardness, flexibility module and mechanical strength - was determined.
Conclusion
. As a result of thermal treatment the mechanical workability of the material was improved, size and number of splinters were decreased; mechanical strength at compaction increased by 33%; micro-hardness and flexibility module at low loadings significantly increased; at high loadings this tendency decreased. Worsening of macro-hardness is in logical connection with increase of crack-resistance at high loadings, which is evidenced also by improved workability.
Apparently the above stated is conditioned by the removal of micro-tensions as a result of thermal tension and microstructural homogenization and stabilization. At high loadings we observe “tempering” similar to metals – decrease of hardness and increase of crack-resistance.
References
Vladislav Domnich, Sara Reynaud, Richard A. Haber, and Manish Chhowalla. Boron Carbide: Structure, Properties, and Stability under Stress. J. Am. Ceram. Soc., 94 (11) (2011), 3605–3628
Zviad Mestvirishvili, Irakli Bairamashvili, Vakhtang Kvatchadze and Nugzar Rekhviashvili. Thermal and Mechanical Properties of B4C-ZrB2 Ceramic Composite. Journal of Materials Science and Engineering B, 5 (9-10) (2015), 385-393
Kevin Gillet, Guido Roma, Jean-Paul Crocombette, Dominique Gosset. The influence of irradiation induced vacancies on the mobility of helium in boron carbide. Journal of Nuclear Materials, Vol. 512 (2018), 288-296
Yu.A.Bykovskii, K.N.Zatsev, P.D.Kervalishvili, I.N.Nikolaev, A.A.Portnov, S.O.Shalamberidze. Neutron fluence sensor based on boron carbide. Technical Physics Letters, Vol. 19, Issue 7 (Yuly 1993), 457-458
P.J.Kervalishvili, G.S.Karumidze, Sh.Sh.Shavelashvili, G.I.Kalandadze, S.O.Shalamberidze. Semiconductor sensor for neutrons. Sensors and Actuators A, 36 (1993), 43-45
P.D.Kervalishvili, , S.O.Shalamberidze Yu.A.Bykovskii. Oriented boron carbide films produced by laser spraying. American Institute of Physics, (1991), 524-527
Helmut Werheit, Murli H. Manghnani, Udo Kuhlmann, Anwar Hushur, Sulkhan Shalamberidze. Mode Grüneisen parameters of boron carbide. Solid State Sciences, 72 (2017), 80-93
Akihiro Nino, Ayumi Tanaka, Shigeaki Sugiyama and Hitoshi Taimatsu. Indentation Size Effect for the Hardness of Refractory Carbides. Materials Transactions, Vol. 51, No. 9 (2010), 1621-1626
Atta U. Khan, Vladislav Domnich, and Richard A. Haber. Boron carbide-based armors: Problems and possible solutions. American Ceramic Society Bulletin, Vol. 96, No. 6, 30-36
В.Д. Рисованый, А.В. Захаров, Е.П. Клочков, В.Б. Пономаренко, Е. М. Муралева, Т. М. Гусева, Поглощающие материалы стержней управления ядерных реакторов. Ульяновск 2012, 57-95
T.G.Abzianidze, A.M.Eristavi, S.O. Shalamberidze. Strength and Creep in Boron Carbide (B4C) and Aluminum Dodecaboride (α-AlB12). Journal of Solid State Chemistry, Volume 154, Issue 1 (October 2000), 191-193
G.I.Kalandadze, S.O.Shalamberidze, A.B.Peikrishvili. Sintering of Boron and Boron Carbide. Journal of Solid State Chemistry, Vol. 154, N. 1 (2000), 194-198
Helmut Werheit and Sulkhan Shalamberidze. Advanced microstructure of boron carbide. Journal of Physics Condensed Matter, Volume 24, Number 38 (2012), 385-406
Tadashi MARUYAMA, Shoji ONOSE , Takeji KAITO & Hiroto HORIUCHI. Effect of Fast Neutron Irradiation on the Properties of Boron Carbide Pellet. Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 34, No. 10 (October 1997), 1006-1014
Yuko MOROHASHI, Tadashi MARUYAMA, Takako DONOMAE, Yoshiaki TACHI and Shoji ONOSE. Neutron Irradiation Effect on Isotopically Tailored 11B4C. Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 45, No. 9, (2008), 867–872
I. A. Bairamashvili, M. V. Galustashvili, J. Sh. Jobava, V. G. Kvatchadze, Z. Z. Mestvirishvili. Composite ceramics based on boron carbide enriched in isotope 11B as a promising radiation resistant structural material – in Russian. Nano Studies, vol. 8 (2013), 305-310
Tao Jianga, Haiyun Jinb, Zhihao Jina, Jianfeng Yanga and Guanjun Qiaoa. An investigation of the mechanical property and thermal shock behavior of machinable B4C/BN ceramic composites. Journal of Ceramic Processing Research. Vol. 10, No. 1 (2009), 113-116
B. Malmal Moshtaghioun, Angel L. Ortiz, Diego Gómez-García, Arturo Domínguez-Rodríguez. Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition. Journal of the European Ceramic Society, Volume 33, ( 2013) 1395–1401
Anstis, G. R., Chantikul, P., Lawn, B. R. and Marshall, D. B. A critical evaluation of indentation techniques for measuring fracture toughness – I. Direct crack measurements. J. Am. Ceram. Soc., 64 (1981), 533-538