

On Lebesgue-Fejer-Steinhaus theorem

Mzevinar Bakuridze¹, Vaja Tarieladze²

¹Batumi Shota Rustaveli State University

²Muskhelishvili Institute of Computational Mathematics, GTU

mzevinar.bakuridze@bsu.edu.ge, v.tarieladze@gtu.ge

Abstract

In this survey, dedicated to 150-th birthday anniversary of Henri Leon Lebesgue (June 28, 1875 - July 26, 1941), in particular, we plan to demonstrate that the name "Lebesgue-Fejer-Steinhaus theorem" is justified for the following result:

Theorem. There exists a continuous function whose Fourier series converges point-wise, but not uniformly.

At the end we formulate a conjecture related with this theorem.

1. Zygmund's version

In Antony Zygmund, Trigonometric series, Third Edition, Volumes I & II Combined, with a foreword by Robert Fefferman. Cambridge Mathematical library. Cambridge University Press, 2002.

one can find the following theorem:

Theorem 1 [1, Ch. VIII, Theorem 1.13, p.300] There exists a continuous function whose Fourier series converges point-wise, but not uniformly.

In connection of this theorem A. Zygmund refers the papers;

Leopold Fejer, Sur les singularites de la serie de Fourier des fonctions continues.

Annales scientifiques de l' Ecole Normale Superieure 28 (1911), 63-104. and

Hugo Steinhaus, Sur la convergence non-uniforme des series de Fourier, Publ. l' Ac. de Cracovie (1913), 145-160

1. Fichtengoltz's version

On p. 497 of

G. M. Fichtengoltz, Course of Differential and Integral Calculus, vol.

III (in Russian), Moscow, 1969

it is written:

"In 1906 H. Lebesgue has constructed an example of a continuous function, for which its Fourier series converges to this function everywhere, but not uniformly."

Therefore, according to Fichtengoltz (June 5, 1888 - June 26, 1959),

Theorem 1 was obtained by Lebesgue before Fejer and Steinhaus.

Surely, Fichtengoltz meant the paper **Henri Lebesgue**, Sur la divergence et la convergence non-uniforme des series de Fourier. C. R. 141, 875-877 (1906).

Bari's version

On p. 128 of **Bari**, Trigonometric series (in Russian), Moscow, 1961. (see beginning of §43 of Chapter I). it is written:

"We want to show that if on a continuous function $f(x)$ we do not impose some further restrictions, then it may happen that its Fourier series may diverge on some point, or may converge everywhere, but converge non-uniformly near of a point. The first examples of these kind were given by Du Bois Reymond and Lebesgue, that's why these facts are named as peculiarity of Du Bois Reymond (the case of divergence) and peculiarity of Lebesgue (the case of non-uniform convergence)."

We note that a reference to 1873's German paper by Paul David Gustav du Bois-Reymond (2 December 1831 - 7 April 1889) is given, while no a reference to a Lebesgue's work is given.

Note also that §44 of Chapter I in Bari's book is entitled as follows:

„A continuous function with the Fourier series, which converges everywhere but not uniformly“. The reference list of Bari's book (as well as of Zygmund's book) does not contain H. Lebesgue's above mentioned paper of 1906.

Lebesgue's role

In the reference list of Bari's book (as well as of Zygmund's book) presents the following text:

Lebesgue, H. Lecons sur les series trigonométriques. Paris, Gautier Villars, 1906, 128 p.

§47 (p.88) of Lebesgue's text begins as follows:

"Existence de fonctions continues représentables par leurs séries de Fourier non uniformément convergentes".

Because of Lebesgue's works [6,7] we think that Theorem 1 should be named as "The Lebesgue-Fejer-Steinhaus theorem".

Final remarks

On p.89 of §47 of Lebesgue's text [7] we can find something very interesting (we hope that our translation from French is correct):

Lebesgue's Question 1: "Is there a continuous function, which has everywhere divergent Fourier series?"

Lebesgue's Question 2: "Is there a continuous function with everywhere convergent Fourier series, but there is no an interval on which it would converge uniformly?"

A negative answer to the first question remained open until 1966, when Swedish mathematician Lennart Axel Edvard Carleson (born 18 March 1928) has published a proof of Lusin's conjecture. Now we can add that, simultaneously, L. Carleson has answered also Lebesgue's Question 1.

After formulating the above questions, on p.89 of §47 of Lebesgue's text [7] we can find also the following footnote:

"Dans un note de Comptes rendus (29 decembre 1902) M. Stekloff a indiqué que la réponse à la première de ces questions était négative. La démonstration de cette propriété n'a pas encore été publiée et les renseignements que contient la Note citée sont insuffisants, à ce qu'il me semble, pour permettre la reconstitution de cette démonstration".

Unfortunately, we could not find the 'Note de M. Stekloff'. We can conclude that, according to Lebesgue, in 1902 V. A. Steklov (9 January 1864 - 30 May 1926) made an attempt to prove that the Fourier series of a continuous function always has a point of convergence.

The second question posed by Lebesgue was solved positively in the above cited papers by Fejer and Steinhaus. This solution proposed by Fejer is included in Zygmund's and Bari's books. Steinhaus's paper has few citations, among them is a nice survey paper by Levan Zhizhiashvili (1934-2006):

L. V. Zhizhiashvili, Some problems in the theory of simple and multiple trigonometric and orthogonal series, *Uspekhi Mat. Nauk*, 1973, Volume 28, Issue 2(170), 65-119.

In August 19, 2018 with the help of Professor Zbigniew Lipecki (Wro- claw, Poland) we got a scanned copy of Steinhaus' paper [8]. According to Steinhaus, Lebesgue's question 1 was initially posed by Du Bois Reymond.

As far as we could clarify until now the following version of Theorem 1 was obtained:

Theorem 2. There exists a continuous odd function whose Fourier series converges point-wise, but not uniformly.

Based on [1] in [2] we conjectured that if for a continuous periodic even function its Fourier series converges point-wise, then it converges uniformly (at least on some interval).

References:

1. Mzevinar Bakuridze, Some classes of functions and the question of convergence and summability of their Fourier series. Candidate Dissertation (in Georgian), Ivane Javakhishvili Tbilisi State University, November 29, 1996.
2. Mzevinar Bakuridze, Vaja Tarieladze, On Fejer-Steinhaus Theorem. Book of Abstracts of IX International Conference of the Georgian Mathematical Union Dedicated to 100-th Anniversary of Ivane Javakhishvili Tbilisi State University, Batumi - Tbilisi, September 3 - 8, p. 81. 2018
3. Bari, N.K. Trigonometric series (in Russian), Moscow, 1961.
4. Leopold Fejer, Sur les singularites de la serie de Fourier des fonctions continues. *Annales scientifiques de l'Ecole Normale Supérieure* 28 (1911), 63-104.
5. G. M. Fihtengoltz, Course of Differential and Integral Calculus, vol. III (in Russian), "Nauka", Moscow 1969.
6. Lebesgue, H. Sur la divergence et la convergence non-uniforme des series de Fourier. (French) *JFM* 36.0331.02 *C. R.* 141, 875-877 (1906).
7. Lebesgue, H. Lecons sur les series trigonométriques. Paris, Gautier- Villars, 1906, 128 p.
8. Hugo Steinhaus, Sur la convergence nonuniforme des series de Fourier, *Publ. l'Ac. de Cracovie* (1913), 145-160.
9. L. V. Zhizhiashvili, Some problems in the theory of simple and multiple trigonometric and orthogonal series, *Uspekhi Mat. Nauk*, 1973, Volume 28, Issue 2(170), 65-119.
10. Antony Zygmund, Trigonometric series, Third Edition, Volumes I & II Combined, with a foreword by Robert Fefferman. Cambridge Mathematical library. Cambridge University Press, 2002.