

Generated Sets of the Complete Semigroup Binary Relations Defined by Semilattices of the Class $\Sigma_6(X, 5)$

Nino Tsinaridze, Giuli Tavdgiridze, Omar Givradze

Batumi Shota Rustaveli State University

n.tsinaridze@bsu.edu.ge, g.tavdgiridze@bsu.edu.ge, omar.givradze@bsu.edu.ge

ABSTRACT. In this article, we study generated sets of the complete semigroups binary relations defined by X – semilattices unions of the class $\Sigma_6(X, 5)$.

Key words: Semigroup, semilattice, binary relation.

1. Introduction.

Let X be an arbitrary nonempty set, D is an X – semilattice of unions which closed with respect to the set-theoretic union of elements from D , f be an arbitrary mapping of the set X in the set D . To each mapping f we put into correspondence a binary relation α_f on the set X that satisfies the condition $\alpha_f = \bigcup_{x \in X} (\{x\} \times f(x))$. The set of all such α_f ($f: X \rightarrow D$) is denoted by $B_X(D)$. It is easy to prove that $B_X(D)$ is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by an X – semilattice of unions D .

We denote by \emptyset an empty binary relation or an empty subset of the set X . The condition $(x, y) \in \alpha$ will be written in the form $x \alpha y$. Further, let $x, y \in X$, $Y \subseteq X$, $\alpha \in B_X(D)$, $\tilde{D} = \bigcup_{Y \in D} Y$ and $T \in D$. We denote by the symbols $y\alpha$, $Y\alpha$, $V(D, \alpha)$, X^* and $V(X^*, \alpha)$ the following sets:

$$\begin{aligned} y\alpha &= \{x \in X \mid y\alpha x\}, \quad Y\alpha = \bigcup_{y \in Y} y\alpha, \quad V(D, \alpha) = \{Y\alpha \mid Y \in D\}, \quad X^* = \{Y \mid \emptyset \neq Y \subseteq X\}, \\ V(X^*, \alpha) &= \{Y\alpha \mid \emptyset \neq Y \subseteq X\}, \quad D_T = \{Z \in D \mid T \subseteq Z\}, \quad Y_T^\alpha = \{y \in X \mid y\alpha = T\}. \end{aligned}$$

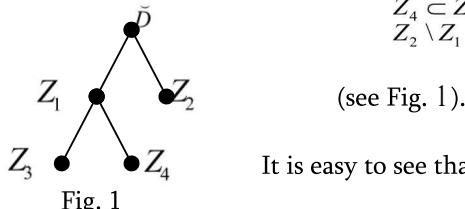
Definition 1. We say that an element α of the semigroup $B_X(D)$ is external if $\alpha \neq \delta \circ \beta$ for all $\delta, \beta \in B_X(D) \setminus \{\alpha\}$ (see [1], Definition 1.15.1).

It is well known, that if B is all external elements of the semigroup $B_X(D)$ and B' be any generated set for the $B_X(D)$, then $B \subseteq B'$ (see [1], Lemma 1.15.1).

2. Related Work.

2. Let $\Sigma_6(X, 5)$ be a class of all X – semilattices of unions whose every element is isomorphic to an X – semilattice of unions $D = \{Z_4, Z_3, Z_2, Z_1, \tilde{D}\}$, which satisfies the condition:

$$\begin{aligned} Z_4 &\subset Z_1 \subset \tilde{D}, \quad Z_3 \subset Z_1 \subset \tilde{D}, \quad Z_2 \subset \tilde{D}, \quad Z_4 \setminus Z_3 \neq \emptyset, \quad Z_3 \setminus Z_4 \neq \emptyset, \\ Z_2 \setminus Z_1 &\neq \emptyset, \quad Z_1 \setminus Z_2 \neq \emptyset, \quad Z_4 \cup Z_3 = Z_1, \quad Z_4 \cup Z_2 = Z_1 \cup Z_2 = Z_1 \cup Z_2 = \tilde{D}. \end{aligned}$$



(see Fig. 1).

It is easy to see that $\tilde{D} = \{Z_4, Z_3, Z_2\}$ is irreducible generating set of the semilattice D .

Let $C(D) = \{P_0, P_1, P_2, P_3, P_4\}$ is a family of sets, where P_0, P_1, P_2, P_3, P_4 are pairwise disjoint subsets of the set X and $\varphi = \begin{pmatrix} \check{D} & Z_1 & Z_2 & Z_3 & Z_4 \\ P_0 & P_1 & P_2 & P_3 & P_4 \end{pmatrix}$ is a mapping of the semilattice D onto the family of sets $C(D)$. Then the formal equalities of the semilattice D has a form:

$$\begin{aligned} \check{D} &= P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4, \\ Z_1 &= P_0 \cup P_2 \cup P_3 \cup P_4, \\ Z_2 &= P_0 \cup P_1 \cup P_3 \cup P_4, \\ Z_3 &= P_0 \cup P_2 \cup P_4, \\ Z_4 &= P_0 \cup P_2 \cup P_3. \end{aligned} \quad (1)$$

here the elements P_4, P_3, P_2, P_1 are basis sources, the element P_0 are sources of completeness of the semilattice D . Therefore $|X| \geq 4$ since $|P_4| \geq 1, |P_3| \geq 1, |P_2| \geq 1, |P_1| \geq 1$ (see [1], chapter 11).

From the formal equalities of the semilattice D immediately follows, that:

$$\begin{aligned} P_4 &= Z_3 \setminus Z_4, & P_3 &= Z_4 \setminus Z_3, & P_3 &= Z_1 \setminus Z_3, \\ P_2 &= Z_1 \setminus Z_2, & P_1 &= Z_2 \setminus Z_1, & P_0 &= Z_4 \cap Z_3 \cap Z_2. \end{aligned} \quad (2)$$

In the sequel, by symbol $\Sigma_{6,0}(X, 5)$ we denoted all semilattices $D = \{Z_4, Z_3, Z_2, Z_1, \check{D}\}$ of the class $\Sigma_6(X, 5)$ for which $Z_4 \cap Z_3 \cap Z_2 \neq \emptyset$. Of the last inequality from the formal equalities (1) of a semilattice D follows that $Z_4 \cap Z_3 \cap Z_2 = P_0 \neq \emptyset$, i.e. $|X| \geq 5$ since $P_4 \neq \emptyset, P_3 \neq \emptyset, P_2 \neq \emptyset, P_1 \neq \emptyset, P_0 \neq \emptyset$.

Let $D \in \Sigma_{6,0}(X, 5)$. By symbols $\mathcal{A}_4, \mathcal{A}_3, \mathcal{A}_2$ and \mathcal{A}_1 we denoted the following sets:

$$\begin{aligned} \mathcal{A}_4 &= \{\{Z_4, Z_3, Z_1, \check{D}\}, \{Z_4, Z_2, Z_1, \check{D}\}, \{Z_3, Z_2, Z_1, \check{D}\}\}, \\ \mathcal{A}_3 &= \{\{Z_4, Z_3, Z_1\}, \{Z_4, Z_2, \check{D}\}, \{Z_3, Z_2, \check{D}\}, \{Z_4, Z_1, \check{D}\}, \{Z_3, Z_1, \check{D}\}, \{Z_2, Z_1, \check{D}\}\}, \\ \mathcal{A}_2 &= \{\{Z_4, Z_1\}, \{Z_3, Z_1\}, \{Z_4, \check{D}\}, \{Z_3, \check{D}\}, \{Z_1, \check{D}\}, \{Z_2, \check{D}\}\}, \\ \mathcal{A}_1 &= \{\{Z_4\}, \{Z_3\}, \{Z_2\}, \{Z_1\}, \{\check{D}\}\}. \end{aligned}$$

Lemma 2.1. Let $D \in \Sigma_{6,0}(X, 5)$. $\alpha = \delta \circ \beta$ for some $\alpha, \delta, \beta \in B_X(D)$. Then the following statements are true:

- a) Let $T, T' \in \{Z_4, Z_3, Z_2\}$, $T \neq T'$. if $T, T' \in V(D, \alpha)$, then α is external element of the semigroup $B_X(D)$;
- b) If $Z_2, Z_1 \in V(D, \alpha)$, then α is external element of the semigroup $B_X(D)$.

Let $D \in \Sigma_{6,0}(X, 5)$. By symbols \mathcal{A}_0 , $B(\mathcal{A}_0)$ and B_0 we denoted the following sets:

$$\begin{aligned} \mathcal{A}_0 &= \{\{Z_4, Z_3, Z_1, \check{D}\}, \{Z_4, Z_2, Z_1, \check{D}\}, \{Z_3, Z_2, Z_1, \check{D}\}, \{Z_4, Z_3, Z_1\}, \{Z_4, Z_2, \check{D}\}, \{Z_3, Z_2, \check{D}\}, \{Z_2, Z_1, \check{D}\}\}, \\ B(\mathcal{A}_0) &= \{\alpha \in B_X(D) \mid V(X^*, \alpha) \in \mathcal{A}_0\}; B_0 = \{\alpha \in B_X(D) \mid V(X^*, \alpha) = D\}. \end{aligned}$$

Remark, that the of the sets B_0 and $B(\mathcal{A}_0)$ are external elements for the semigroup $B_X(D)$.

Lemma 2.2. Let $D \in \Sigma_{6,0}(X, 5)$. Then the following statements are true:

- a) if quasinormal representation of a binary relation α has a form

$$\alpha = (Y_4^\alpha \times Z_4) \cup (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \check{D}),$$

where $Y_4^\alpha, Y_1^\alpha, Y_0^\alpha \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathcal{A}_0)$;

- b) if quasinormal representation of a binary relation α has a form

$$\alpha = (Y_3^\alpha \times Z_3) \cup (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \check{D}),$$

where $Y_3^\alpha, Y_1^\alpha, Y_0^\alpha \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathcal{A}_0)$;

Lemma 2.3. Let $D \in \Sigma_{6,0}(X, 5)$. Then the following statements are true:

- a) if quasinormal representation of a binary relation has a form $\alpha = (Y_4^\alpha \times Z_4) \cup (Y_1^\alpha \times Z_1)$,

where $Y_4^\alpha, Y_1^\alpha \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathcal{A}_0)$;

b) if quasinormal representation of a binary relation has a form $\alpha = (Y_3^\alpha \times Z_3) \cup (Y_1^\alpha \times Z_1)$,
 where $Y_3^\alpha, Y_1^\alpha \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathcal{A}_0)$;

c) if quasinormal representation of a binary relation has a form $\alpha = (Y_4^\alpha \times Z_4) \cup (Y_0^\alpha \times \bar{D})$,
 where $Y_4^\alpha, Y_0^\alpha \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathcal{A}_0)$;

d) if quasinormal representation of a binary relation has a form $\alpha = (Y_3^\alpha \times Z_3) \cup (Y_0^\alpha \times \bar{D})$,
 where $Y_3^\alpha, Y_0^\alpha \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathcal{A}_0)$;

e) if quasinormal representation of a binary relation has a form $\alpha = (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \bar{D})$,
 where $Y_1^\alpha, Y_0^\alpha \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathcal{A}_0)$;

f) if quasinormal representation of a binary relation has a form $\alpha = (Y_2^\alpha \times Z_2) \cup (Y_0^\alpha \times \bar{D})$,
 where $Y_2^\alpha, Y_0^\alpha \notin \{\emptyset\}$, then α is generating by elements of the elements of set $B(\mathcal{A}_0)$.

g) if quasinormal representation of a binary relation has a form $\alpha = X \times Z_1$, then α is generating by elements of the elements of set $B(\mathcal{A}_0)$.

h) if quasinormal representation of a binary relation has a form $\alpha = X \times \bar{D}$, then α is generating by elements of the elements of set $B(\mathcal{A}_0)$.

Lemma 2.4. Let $D \in \Sigma_{6,0}(X, 5)$. Then the following statements is true:

a) if $|X \setminus \bar{D}| \geq 1$ and $T \in \{Z_4, Z_3, Z_2\}$, then binary relation $\alpha = X \times T$ is generating by elements of the elements of set $B(\mathcal{A}_0)$;

b) if $X = \bar{D}$ and $T \in \{Z_4, Z_3, Z_2\}$, then binary relation $\alpha = X \times T$ is external element for the semigroup $B_X(D)$.

3. Result

Theorem 2.1. Let $D \in \Sigma_{6,0}(X, 5)$ and

$$\mathcal{A}_0 = \left\{ \{Z_4, Z_3, Z_1, \bar{D}\}, \{Z_4, Z_2, Z_1, \bar{D}\}, \{Z_3, Z_2, Z_1, \bar{D}\}, \{Z_4, Z_3, Z_1\}, \{Z_4, Z_2, \bar{D}\}, \{Z_3, Z_2, \bar{D}\}, \{Z_2, Z_1, \bar{D}\} \right\},$$

$$B(\mathcal{A}_0) = \left\{ \alpha \in B_X(D) \mid V(D, \alpha) \in \mathcal{A}_0 \right\}; B_0 = \left\{ \alpha \in B_X(D) \mid V(X^*, \alpha) = D \right\}.$$

Then the following statements are true:

a) if $|X \setminus \bar{D}| \geq 1$, then the $S_0 = B_0 \cup B(\mathcal{A}_0)$ is irreducible generating set for the semigroup $B_X(D)$;

b) if $X = \bar{D}$, then the $S_1 = B_0 \cup B(\mathcal{A}_0) \cup \{X \times Z_4, X \times Z_3, X \times Z_2\}$ is irreducible generating set for the semigroup $B_X(D)$.

Proof. Let $D \in \Sigma_{6,0}(X, 5)$ and $|X \setminus \bar{D}| \geq 1$. First, we proved that every element of the semigroup $B_X(D)$ is generating by elements of the set S_0 . Indeed, let α be arbitrary element of the semigroup $B_X(D)$.

Then quasinormal representation of a binary relation α has a form

$$\alpha = (Y_4^\alpha \times Z_4) \cup (Y_3^\alpha \times Z_3) \cup (Y_2^\alpha \times Z_2) \cup (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \bar{D}),$$

where $Y_4^\alpha \cup Y_3^\alpha \cup Y_2^\alpha \cup Y_1^\alpha \cup Y_0^\alpha = X$ and $Y_i^\alpha \cap Y_j^\alpha = \emptyset$ ($0 \leq i \neq j \leq 4$). For the $|V(X^*, \alpha)|$ we consider the following cases:

1) $|V(X^*, \alpha)| = 5$. Then $\alpha \in B_0$ and $B_0 \subset S_0$ by definition of a set S_0 .

2) $|V(X^*, \alpha)| = 4$. Then $V(X^*, \alpha) \in \mathcal{A}_4 = \{\{Z_4, Z_3, Z_1, \bar{D}\}, \{Z_4, Z_2, Z_1, \bar{D}\}, \{Z_3, Z_2, Z_1, \bar{D}\}\} \subset \mathcal{A}_0$ i.e. $\alpha \in B(\mathcal{A}_0)$ and $B(\mathcal{A}_0) \subset S_0$ by definition of a set S_0 .

3) $|V(X^*, \alpha)| = 3$. Then we have

$$V(X^*, \alpha) \in \mathcal{A}_3 = \{\{Z_4, Z_3, Z_1\}, \{Z_4, Z_2, \bar{D}\}, \{Z_3, Z_2, \bar{D}\}, \{Z_4, Z_1, \bar{D}\}, \{Z_3, Z_1, \bar{D}\}, \{Z_2, Z_1, \bar{D}\}\}.$$

By definition of e set \mathcal{A}_0 we have that $\{\{Z_4, Z_3, Z_1\}, \{Z_4, Z_2, \bar{D}\}, \{Z_3, Z_2, \bar{D}\}, \{Z_2, Z_1, \bar{D}\}\} \subset \mathcal{A}_0$, i.e. in this case $\alpha \in B(\mathcal{A}_0)$ and $B(\mathcal{A}_0) \subset S_0$ by definition of a set S_0 .

If $V(X^*, \alpha) \in \{\{Z_4, Z_1, \bar{D}\}, \{Z_3, Z_1, \bar{D}\}\}$, then from the statement a) and b) of the Lemma 2.2 element α is generating by elements $B(\mathcal{A}_0)$ and $B(\mathcal{A}_0) \subset S_0$ by definition of a set S_0 .

4) $|V(X^*, \alpha)| = 2$. Then we have, that

$$V(X^*, \alpha) \in \mathcal{A}_2 = \{\{Z_4, Z_1\}, \{Z_3, Z_1\}, \{Z_4, \bar{D}\}, \{Z_3, \bar{D}\}, \{Z_1, \bar{D}\}, \{Z_2, \bar{D}\}\}.$$

Then from the statement a)–f) of the Lemma 2.3 element α is generating by elements $B(\mathcal{A}_0)$ and $B(\mathcal{A}_0) \subset S_0$ by definition of a set S_0 .

5) $|V(X^*, \alpha)| = 1$. Then we have, that $V(X^*, \alpha) \in \mathcal{A}_1 = \{\{Z_1\}, \{\bar{D}\}, \{Z_4\}, \{Z_3\}, \{Z_2\}\}$.

If $V(X^*, \alpha) \in \{\{Z_1\}, \{\bar{D}\}\}$, then from the statement g), h) of the Lemma 2.3 element α is generating by elements $B(\mathcal{A}_0)$ and $B(\mathcal{A}_0) \subset S_0$ by definition of a set S_0 .

If $V(X^*, \alpha) \in \{\{Z_4\}, \{Z_3\}, \{Z_2\}\}$, then from the statement a) of the Lemma 2.4 element α is generating by elements $B(\mathcal{A}_0)$ and $B(\mathcal{A}_0) \subset S_0$ by definition of a set S_0 .

Thus, we have that S_0 is generating set for the semigroup $B_X(D)$.

If $|X \setminus \bar{D}| \geq 1$, then the set S_0 is irreducible generating set for the semigroup $B_X(D)$ since S_0 is a set external elements of the semigroup $B_X(D)$.

The statement a) of the Theorem 2.1 is proved.

Now, let $D \in \Sigma_{6,0}(X, 5)$ and $X = \bar{D}$. First, we proved that every element of the semigroup $B_X(D)$ is generating by elements of the set S_1 . The cases 1), 2), 3) and 4) are proved analogously of the cases 1), 2), 3) and 4) given above and consider case, when

$$V(X^*, \alpha) \in \mathcal{A}_1 = \{\{Z_1\}, \{\bar{D}\}, \{Z_4\}, \{Z_3\}, \{Z_2\}\}.$$

If $V(X^*, \alpha) \in \{\{Z_1\}, \{\bar{D}\}\}$, then from the statement g), h) of the Lemma 2.3 element α is generating by elements $B(\mathcal{A}_0)$ and $B(\mathcal{A}_0) \subset S_0$ by definition of a set S_1 .

If $V(X^*, \alpha) \in \{\{Z_4\}, \{Z_3\}, \{Z_2\}\}$, then $\alpha \in S_1$ by definition of a set S_1 .

Thus, we have that S_1 is generating set for the semigroup $B_X(D)$.

If $X = \bar{D}$, then the set S_1 is irreducible generating set for the semigroup $B_X(D)$ since S_1 is a set external elements of the semigroup $B_X(D)$.

The statement b) of the Theorem 2.1 is proved.

Theorem 2.1 is proved.

Theorem 2.2. Let $D = \{Z_4, Z_3, Z_2, Z_1, \bar{D}\} \in \Sigma_{6,0}(X, 5)$ and

$$\mathcal{A}_0 = \left\{ \{Z_4, Z_3, Z_1, \bar{D}\}, \{Z_4, Z_2, Z_1, \bar{D}\}, \{Z_3, Z_2, Z_1, \bar{D}\}, \{Z_4, Z_3, Z_1\}, \{Z_4, Z_2, \bar{D}\}, \{Z_3, Z_2, \bar{D}\}, \{Z_2, Z_1, \bar{D}\} \right\},$$

$$B(\mathcal{A}_0) = \left\{ \alpha \in B_X(D) \mid V(D, \alpha) \in \mathcal{A}_0 \right\}; B_0 = \left\{ \alpha \in B_X(D) \mid V(X^*, \alpha) = D \right\}.$$

Then the following statements are true:

a) If $|X \setminus \bar{D}| \geq 1$, then the number $|S_0|$ elements of the set $S_0 = B_0 \cup B(\mathcal{A}_0)$ is equal to

$$|S_0| = 5^n - 2 \cdot 3^n + 5.$$

b) If $X = \bar{D}$, then the number $|S_1|$ elements of the set $S_1 = B_0 \cup B(\mathcal{A}_0) \cup \{X \times Z_4, X \times Z_3, X \times Z_2\}$ is equal to

$$|S_1| = 5^n - 2 \cdot 3^n + 8.$$

Proof. Let number of a set X is equal to n , i.e. $|X| = n$. Let $S_n = \{\varphi_1, \varphi_2, \dots, \varphi_{n!}\}$ is a group all one to one mapping of a set $M = \{1, 2, \dots, n\}$ on the set M and $\varphi_{i_1}, \varphi_{i_2}, \dots, \varphi_{i_m}$ ($m \leq n$) are arbitrary elements of the group S_n , $Y_{\varphi_1}, Y_{\varphi_2}, \dots, Y_{\varphi_m}$ are arbitrary partitioning of a set X . By symbol k_n^m we denote the number elements of a set $\{Y_{\varphi_1}, Y_{\varphi_2}, \dots, Y_{\varphi_m}\}$. It is well known, that

$$k_n^m = \sum_{i=1}^m \frac{(-1)^{m+i}}{(i-1)! \cdot (m-i)!} \cdot i^{n-1}.$$

If $m = 2, 3, 4, 5$, then we have

$$k_n^2 = 2^{n-1} - 1, \quad k_n^3 = \frac{1}{2} \cdot 3^{n-1} - 2^{n-1} + \frac{1}{2}, \quad k_n^4 = \frac{1}{6} \cdot 4^{n-1} - \frac{1}{2} \cdot 3^{n-1} + \frac{1}{2} \cdot 2^{n-1} - \frac{1}{6},$$

$$k_n^5 = \frac{1}{24} \cdot 5^{n-1} - \frac{1}{6} \cdot 4^{n-1} + \frac{1}{4} \cdot 3^{n-1} - \frac{1}{6} \cdot 2^{n-1} + \frac{1}{24}.$$

If $Y_{\varphi_1}, Y_{\varphi_2}$ are any two elements partitioning of a set X and $\bar{\beta} = (Y_{\varphi_1} \times T_1) \cup (Y_{\varphi_2} \times T_2)$, where $T_1, T_2 \in D$ and $T_1 \neq T_2$. Then number of different binary relations $\bar{\beta}$ of a semigroup $B_X(D)$ is equal to

$$2 \cdot k_n^2 = 2^n - 2. \quad (3)$$

If $Y_{\varphi_1}, Y_{\varphi_2}, Y_{\varphi_3}$ are any three elements partitioning of a set X and

$$\bar{\beta} = (Y_{\varphi_1} \times T_1) \cup (Y_{\varphi_2} \times T_2) \cup (Y_{\varphi_3} \times T_3),$$

where T_1, T_2, T_3 are pairwise different elements of a given semilattice D . Then number of different binary relations $\bar{\beta}$ of a semigroup $B_X(D)$ is equal to

$$6 \cdot k_n^3 = 3^n - 3 \cdot 2^n + 3. \quad (4)$$

If $Y_{\varphi_1}, Y_{\varphi_2}, Y_{\varphi_3}, Y_{\varphi_4}$ are any four elements partitioning of a set X and

$$\bar{\beta} = (Y_{\varphi_1} \times T_1) \cup (Y_{\varphi_2} \times T_2) \cup (Y_{\varphi_3} \times T_3) \cup (Y_{\varphi_4} \times T_4),$$

where T_1, T_2, T_3, T_4 are pairwise different elements of a given semilattice D . Then number of different binary relations $\bar{\beta}$ of a semigroup $B_X(D)$ is equal to

$$24 \cdot k_n^4 = 4^n - 4 \cdot 3^n + 3 \cdot 2^{n+1} - 4. \quad (5)$$

If $Y_{\varphi_1}, Y_{\varphi_2}, Y_{\varphi_3}, Y_{\varphi_4}, Y_{\varphi_5}$ are any four elements partitioning of a set X and

$$\bar{\beta} = (Y_{\varphi_1} \times T_1) \cup (Y_{\varphi_2} \times T_2) \cup (Y_{\varphi_3} \times T_3) \cup (Y_{\varphi_4} \times T_4) \cup (Y_{\varphi_5} \times T_5),$$

where T_1, T_2, T_3, T_4, T_5 are pairwise different elements of a given semilattice D . Then number of different binary relations $\bar{\beta}$ of a semigroup $B_X(D)$ is equal to

$$120 \cdot k_n^5 = 5^n - 5 \cdot 4^n + 10 \cdot 3^n - 10 \cdot 2^n + 5. \quad (6)$$

If $\alpha \in B_0$, then quasinormal representation of a binary relation α has a form

$$\alpha = (Y_4^\alpha \times Z_4) \cup (Y_3^\alpha \times Z_3) \cup (Y_2^\alpha \times Z_2) \cup (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \bar{D}),$$

where $Y_4^\alpha, Y_3^\alpha, Y_2^\alpha \notin \{\emptyset\}$, or a system $Y_4^\alpha, Y_3^\alpha, Y_2^\alpha, Y_1^\alpha$, or a system $Y_4^\alpha, Y_3^\alpha, Y_2^\alpha, Y_0^\alpha$, or a system $Y_4^\alpha, Y_3^\alpha, Y_2^\alpha, Y_1^\alpha, Y_0^\alpha$ are partitioning of the set X .

If the system $Y_4^\alpha, Y_3^\alpha, Y_2^\alpha$, or a system $Y_4^\alpha, Y_3^\alpha, Y_2^\alpha, Y_1^\alpha$, or a system $Y_4^\alpha, Y_3^\alpha, Y_2^\alpha, Y_0^\alpha$, or a system $Y_4^\alpha, Y_3^\alpha, Y_2^\alpha, Y_1^\alpha, Y_0^\alpha$ are partitioning of the set X . Of this from the equalities (4), (5) and (6) follows that

$$\begin{aligned} |B_0| = & (5^n - 5 \cdot 4^n + 10 \cdot 3^n - 10 \cdot 2^n + 5) + 2 \cdot (4^n - 4 \cdot 3^n + 6 \cdot 2^n - 4) + \\ & + (3^n - 3 \cdot 2^n + 3) = 5^n - 3 \cdot 4^n + 3 \cdot 3^n - 2 \cdot 2^n + 4. \end{aligned}$$

If $\alpha \in B(\mathcal{A}_0)$, then by definition of a set $B(\mathcal{A}_0)$ the quasinormal representation of a binary relation α has a form:

$$\alpha = (Y_4^\alpha \times Z_4) \cup (Y_3^\alpha \times Z_3) \cup (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \bar{D}),$$

where $Y_4^\alpha, Y_3^\alpha, Y_0^\alpha \in \{\emptyset\}$, or $Y_4^\alpha, Y_3^\alpha, Y_1^\alpha, Y_0^\alpha \in \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_4^\alpha \times Z_4) \cup (Y_2^\alpha \times Z_2) \cup (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \bar{D}),$$

where $Y_4^\alpha, Y_2^\alpha, Y_1^\alpha \in \{\emptyset\}$, or $Y_4^\alpha, Y_2^\alpha, Y_1^\alpha, Y_0^\alpha \in \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_3^\alpha \times Z_3) \cup (Y_2^\alpha \times Z_2) \cup (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \bar{D})$$

where $Y_3^\alpha, Y_2^\alpha, Y_1^\alpha \in \{\emptyset\}$, or $Y_3^\alpha, Y_2^\alpha, Y_1^\alpha, Y_0^\alpha \in \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_4^\alpha \times Z_4) \cup (Y_3^\alpha \times Z_3) \cup (Y_1^\alpha \times Z_1),$$

where $Y_4^\alpha, Y_3^\alpha \in \{\emptyset\}$, or $Y_4^\alpha, Y_3^\alpha, Y_1^\alpha \in \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_4^\alpha \times Z_4) \cup (Y_2^\alpha \times Z_2) \cup (Y_0^\alpha \times \bar{D}),$$

where $Y_4^\alpha, Y_2^\alpha \in \{\emptyset\}$, or $Y_4^\alpha, Y_2^\alpha, Y_0^\alpha \in \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_3^\alpha \times Z_3) \cup (Y_2^\alpha \times Z_2) \cup (Y_0^\alpha \times \bar{D})$$

where $Y_3^\alpha, Y_2^\alpha \in \{\emptyset\}$, or $Y_3^\alpha, Y_2^\alpha, Y_0^\alpha \in \{\emptyset\}$ are partitioning of the set X respectively;

$$\alpha = (Y_2^\alpha \times Z_2) \cup (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \bar{D}),$$

where $Y_2^\alpha, Y_1^\alpha \in \{\emptyset\}$, or $Y_2^\alpha, Y_1^\alpha, Y_0^\alpha \in \{\emptyset\}$ are partitioning of the set X respectively.

Of this and from the equality (3), (4) and (5) follows that

$$\begin{aligned} |B(\mathcal{A}_0)| = & 4 \cdot (2^n - 2) + 7 \cdot (3^n - 3 \cdot 2^n + 3) + 3 \cdot (4^n - 4 \cdot 3^n + 6 \cdot 2^n - 4) = \\ = & 4 \cdot 2^n - 8 + 7 \cdot 3^n - 21 \cdot 2^n + 21 + 3 \cdot 4^n - 12 \cdot 3^n + 18 \cdot 2^n - 12 = 3 \cdot 4^n - 5 \cdot 3^n + 2^n + 1. \end{aligned}$$

So, we have that:

$$\begin{aligned} |S_0| = & |B_0 \cup B(\mathcal{A}_0)| = (5^n - 3 \cdot 4^n + 3 \cdot 3^n - 2^n + 4) + (3 \cdot 4^n - 5 \cdot 3^n + 2^n + 1) = \\ = & 5^n - 2 \cdot 3^n + 5, \\ |S_1| = & |B_0 \cup B(\mathcal{A}_0) \cup \{X \times Z_4, X \times Z_3, X \times Z_2\}| = 5^n - 2 \cdot 3^n + 8. \end{aligned}$$

since $B_0 \cap B(\mathcal{A}_0) = B_0 \cap \{X \times Z_4, X \times Z_3, X \times Z_2\} = B(\mathcal{A}_0) \cap \{X \times Z_4, X \times Z_3, X \times Z_2\} = \emptyset$.

Theorem 2.2 is proved.

By symbol $\Sigma_{6,1}(X, 5)$ we denoted all semilattices $D = \{Z_4, Z_3, Z_2, Z_1, \bar{D}\}$ of the class $\Sigma_6(X, 5)$ for which $Z_4 \cap Z_3 \cap Z_2 = \emptyset$. Of the last equality from the formal equalities of a semilattice D follows that $Z_4 \cap Z_3 \cap Z_2 = P_0 = \emptyset$, i.e. $|X| \geq 4$ since $P_4 \neq \emptyset$, $P_3 \neq \emptyset$, $P_2 \neq \emptyset$, $P_1 \neq \emptyset$.

In this case, the formal equalities of the semilattice D has a form:

$$\begin{aligned}\check{D} &= P_1 \cup P_2 \cup P_3 \cup P_4, \\ Z_1 &= P_2 \cup P_3 \cup P_4, \\ Z_2 &= P_1 \cup P_3 \cup P_4, \\ Z_3 &= P_2 \cup P_4, \\ Z_4 &= P_2 \cup P_3.\end{aligned}$$

From the formal equalities of the semilattice D immediately follows, that:

$$P_4 = Z_3 \setminus Z_4, P_3 = Z_4 \setminus Z_3 = Z_1 \setminus Z_3, P_2 = Z_4 \cap Z_3 = Z_1 \setminus Z_2, P_1 = Z_2 \setminus Z_1.$$

In this case we suppose that $D \in \Sigma_{6,1}(X, 5)$.

Let $D \in \Sigma_{6,1}(X, 5)$. By symbols A_0 , $B(A_0)$ and B_0 we denoted the following sets:

$$\begin{aligned}A_0 &= \left\{ \{Z_4, Z_3, Z_1, \check{D}\}, \{Z_4, Z_2, Z_1, \check{D}\}, \{Z_3, Z_2, Z_1, \check{D}\}, \{Z_4, Z_3, Z_1\}, \{Z_4, Z_2, \check{D}\}, \{Z_3, Z_2, \check{D}\}, \{Z_2, Z_1, \check{D}\} \right\}, \\ B(A_0) &= \left\{ \alpha \in B_X(D) \mid V(X^*, \alpha) \in A_0 \right\}, B_0 = \left\{ \alpha \in B_X(D) \mid V(X^*, \alpha) = D \right\}\end{aligned}$$

Remark, that the of the sets B_0 and $B(A_0)$ are external elements for the semigroup $B_X(D)$.

Theorem 3.1. *Let $D \in \Sigma_{6,1}(X, 5)$, then the following statements are true:*

- a) *if $|X \setminus \check{D}| \geq 1$, then the $S_0 = B_0 \cup B(A_0)$ is irreducible generating set for the semigroup $B_X(D)$;*
- b) *if $X = \check{D}$, then the $S_1 = B_0 \cup B(A_0) \cup \{X \times Z_4, X \times Z_3, X \times Z_2\}$ is irreducible generating set for the semigroup $B_X(D)$.*

Theorem 3.2. *Let $D = \{Z_4, Z_3, Z_2, Z_1, \check{D}\} \in \Sigma_{6,0}(X, 5)$ and*

$$\begin{aligned}A_0 &= \left\{ \{Z_4, Z_3, Z_1, \check{D}\}, \{Z_4, Z_2, Z_1, \check{D}\}, \{Z_3, Z_2, Z_1, \check{D}\}, \{Z_4, Z_3, Z_1\}, \{Z_4, Z_2, \check{D}\}, \{Z_3, Z_2, \check{D}\}, \{Z_2, Z_1, \check{D}\} \right\}, \\ B(A_0) &= \left\{ \alpha \in B_X(D) \mid V(D, \alpha) \in A_0 \right\}; B_0 = \left\{ \alpha \in B_X(D) \mid V(X^*, \alpha) = D \right\}.\end{aligned}$$

Then the following statements are true:

- a) *If $|X \setminus \check{D}| \geq 1$, then the number $|S_0|$ elements of the set $S_0 = B_0 \cup B(A_0)$ is equal to*

$$|S_0| = 5^n - 2 \cdot 3^n + 5.$$

- b) *If $X = \check{D}$, then the number $|S_1|$ elements of the set $S_1 = B_0 \cup B(A_0) \cup \{X \times Z_4, X \times Z_3, X \times Z_2\}$ is equal to*

$$|S_1| = 5^n - 2 \cdot 3^n + 8.$$

Proof. The theorem 3.1 and 3.2 we may prove analogously of the theorems 2.1 and 2.2.

References:

1. Yasha Diasamidze, Shota Makharadze. Complete semigroups of binary relations. Turkey, Kriter, 2013, 1–519.
2. Yasha Diasamidze, Neşet Aydin, Ali Erdoğan. Generating Set of the Complete Semigroups of Binary Relations. Applied Mathematics, 2016, 7, 98-107.
3. Ya. Diasamidze, N. Tsinaridze, and G. Tavdgiridze. Generating Sets of the Complete Semigroup of Binary Relations defined by Semilattices of the class $\Sigma 4(X, 4)$. Journal of Mathematical Sciences, Vol. 275, No. 5, October, 2023, 617–643.