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Abstract

In the modern world of operations that include defense, emergency medicine, and control of energy
systems, the most unpredictable element remains human beings. Machines can be tested and software can
be debugged, but the human factor shifts rapidly. A person may begin the day sharp and fully concentrated
and then in just a few hours lose focus, slow down reactions, and make mistakes. Some of these mistakes
are small and only add noise to the workflow, but others can have fatal consequences.

Traditional methods of monitoring stress and readiness are insufficient. Questionnaires rely on
subjective answers. Medical check-ups are periodic and static. Psychological interviews capture a snapshot
but not the constant dynamics. This means that real changes often pass unnoticed until the damage is already
visible.

This work describes a wearable system with Edge Al that addresses the gap. The system combines two
measures. The first is the Cognitive Readiness Index or CRI, which reflects short-term readiness. The second
is the Destabilization Risk Index or DRI, which reflects long-term resilience. Both rely mainly on HRV data,
supported by electrodermal activity, motion signals, and body temperature. Computation is done locally on
the device. The aim is to reduce immediate errors and at the same time protect long-term health.

Keywords: FPGA, Edge Al, Zynq SoC, Psychophysiological Monitoring, Decision Support Systems,
HRYV, Acute Stress Detection, Wearable Technology.

1. Introduction.

The decline of performance under pressure is well documented. At first it shows in hesitation and
slightly slower responses. Later the same pressure leads to poor concentration and higher error rates. After
extended exposure it becomes clear fatigue or even full breakdown.

Examples are easy to find. Soldiers on extended field exercises lose attention after several nights
without proper sleep. Doctors in emergency departments start the day performing at a high level but after
twenty hours on duty they show lapses and misjudgments. Operators in power grid control rooms maintain
concentration for hours but after too many alarms their attention drifts and serious mistakes may follow up
with [1].

Existing systems are not sufficient. Self-assessment forms are unreliable because people misjudge
themselves. Medical evaluations are too rare to be useful in dynamic environments. Stress is continuous and
fast while evaluation tools are static and slow.

The technology of wearables has opened a new possibility. Small sensors for ECG, accelerometers, and
skin conductance can be worn without interfering with tasks. Edge processors can analyze the data directly
on the device. This solves two major problems. First, it works without internet, which is important for secure
and remote zones. Second, private health data remain local, which protects users from surveillance risks.

Most current solutions look only at short-term acute stress or only at long-term chronic effects. Real
life is both. Short stress events accumulate and create chronic risk. That is why the proposed model integrates
both.
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2. Methodology.

Hardware platform

The system is a wearable medical diagnostic complex built on FPGA Zynq. The choice is motivated by
three reasons. First, FPGA supports parallel data processing, which is needed for real-time signals. Second,
energy use is low, which is important for field work. Third, FPGA allows integration of Al accelerators on
the same platform.

The sensors included are ECG for HRV measurement, electrodermal activity sensors for arousal, IMU
for physical activity and posture, and temperature sensors for long-term physiological tracking. An
accelerator runs neural networks directly on the device so only indices are stored or sent.

Data Acquisition and Feature Extraction

The R-R interval is the time between two consecutive R-peaks in the QRS complex of an
electrocardiogram (ECQG). It reflects the duration of one cardiac cycle and is the fundamental measure used
to calculate heart rate variability (HRV). The analysis is centered on Heart Rate Variability (HRV), a widely
accepted marker of autonomic nervous system (ANS) dynamics [2,3]. From ECG signals, R—R intervals are
extracted. For each time window, a feature vector is formed, including time-domain features, frequency-
domain features, nonlinear features [4].

One important metric is RMSSD, which reflects vagal activity:

N-1
1
RMSSD = |~— Z(mei+1 —RR))?,
i=

where N is the number of R-R intervals in the window.

RMSSD reflects short-term variability. Low RMSSD is usually a sign of stress or fatigue.

Other metrics include SDNN, LF/HF ratio, and nonlinear measures such as entropy. Each metric gives
only partial information. Together they produce a more stable view of autonomic balance [5].

Context awareness and adaptive baselines

Physiological signals cannot be interpreted without context. A high heart rate may signal stress but it
may also mean that the person is running or climbing stairs. To reduce false alarms, IMU data are added to
interpret changes correctly.

Baselines are not constant. Normal values for a soldier in the first week of training are not the same as
after a month. To capture gradual adaptation, the system uses Exponentially Weighted Moving Average:

pe = axe + (1 — aue—y,

where (& is the smoothing factor, X; is the latest observation, and [ is the updated mean.

This approach updates baselines smoothly. Temporary spikes do not change the baseline but long-term
shifts are reflected.

Cognitive Readiness Index (CRI)

The Cognitive Readiness Index is a measure of immediate readiness. The model calculates
Mahalanobis distance between current features and baseline:

D* = (x — )2 (x — ),
where x is the feature vector, U is the baseline mean, and 2 is the covariance matrix.
This distance is then transformed into a score:
CRI = e~PP?,

where f is a scaling parameter.

High CRI means the person is close to baseline and ready. Low CRI means deviation and risk.

To link CRI with real errors, logistic regression is applied:
1

P(E) = 1+ e~ o+v1CRD’

where P(E) is the probability of error, and Yy, /1 are regression coefficients.

148



0565370Mm37 3odm333900 s Jom§a3900 06xz3MMASE0YM @ L3M3Y603sgom &aJbmmmangxddo - d300do 6-7 MEGMAdyMo 2025

This equation estimates the probability of mistakes. Tests have shown that lower CRI correlates with
higher error rates in vigilance tasks.

Destabilization Risk Index (DRI)

The Destabilization Risk Index reflects long-term resilience. It is based on a CNN LSTM neural model
trained on sequences of HRV and related features. CNN layers extract local patterns. LSTM layers capture
temporal dynamics.

To create a composite index, the neural model’s output is combined with anomaly scores and historical

data using a weighted scheme:
3

DRI = wyPeyn—rstm + W2Sanom + W3Hhistrz w; =1,
i=1

where Pgyy—pstum is the probability of being in a pre-episode state, Sgy0m is the anomaly score, and
Hp;s represents historical destabilization factors.

3. Results

At the current stage results are expected rather than final. Cognitive Readiness Index is predicted to
show correlation with errors and reaction times in laboratory tests. Adding IMU context should reduce
false alarms. Destabilization Risk Index is expected to achieve AUC higher than 0.85 in detecting early
destabilization [7]. A prototype on FPGA Zynq will be prepared and will be tested first with soldiers in
training environments and later in emergency response drills.

Comparisons will also be done against classical surveys and medical instruments to see whether the
device produces equal or better prediction.

4. Discussion

The main contribution is integration of short-term and long-term monitoring. Most previous systems
separate them. The theory of allostatic load describes how repeated stress leads to chronic burden [8]. The
combined model is an attempt to reflect this.

Cognitive Readiness Index is tactical. It helps leaders know who is ready at the moment. Destabilization
Risk Index is strategic [9,10]. It provides early warning before a breakdown. Together they give a more
complete picture of human performance.

Local processing on the device has several benefits. It ensures privacy because raw data are not
transmitted [11,12]. It ensures independence because no internet is required. Both are critical in secure and
remote conditions.

Challenges remain. Collecting long-term datasets is difficult. Deep learning models require large
training data. Adoption may face resistance because people fear surveillance. To solve this, clear rules and
transparent governance must be developed. Trust is essential. Without trust the system will not be accepted.

5. Conclusion

This work presented a model for monitoring psychophysiological state with a wearable Edge Al device.
It combines Cognitive Readiness Index for short-term readiness with Destabilization Risk Index for long-
term resilience. Both indices are based on HRV supported by other signals. Baselines are adaptive. Context
is included. Computation is local.

Future work includes collection of larger datasets, validation in real field conditions, and development
of transparent policies. If implemented with trust, the system could reduce immediate mistakes and protect
long-term health [13].
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