0565370Mm37 3odm333900 s Jom§a3900 06xz3MMASE0YM @ L3M3Y603sgom &aJbmmmangxddo - d300do 6-7 MEGMAdyMo 2025

Bypassing F5 WAF for Data Exfiltration during Post-Exploitation
Avtandili Bichnigauri, Luka Shonia, Ilia Shonia

Georgian Technical University
bichnigauri_av(@gtu.ge, shonia@gtu.ge, iliashoniafr@gmail.com

Abstract

The post-exploitation phase of a cyberattack is where adversaries achieve their ultimate objectives,
often centered on the exfiltration of sensitive data. While Web Application Firewalls (WAFs), such as those
from F5 Networks, serve as a critical defense layer, their reliance on static, signature-based detection can
present a significant vulnerability. This article explores a practical methodology for bypassing F5 WAF
protections to enable data exfiltration after an initial compromise. The technique involves a multi-layer
encoding scheme (Base64, Reversal, and Hexadecimal encoding) applied to both the attacker's commands
within the HTTP request and the stolen data within the HTTP response. This process effectively obfuscates
malicious payloads from static rule sets. We detail the step-by-step methodology, discuss the inherent
limitations of static analysis in WAFs, and present potential solutions for defenders, including dynamic
analysis, parameter validation, and behavioral anomaly detection. The conclusion underscores the evolving
threat landscape and proposes future research directions, such as employing custom encryption and
asymmetric cryptography for more sophisticated evasion.

Keywords: Data Exfiltration, Post-Exploitation, F5 WAF, Web Application Firewall Bypass,
Encoding, Obfuscation, Cybersecurity, Command and Control, C2, Static Analysis, Dynamic Analysis,
SIEM, IDS/IPS.

1. Introduction.

In the modern cyber threat landscape, the initial compromise of a system is often merely the opening
act. The true damage occurs during the post-exploitation phase, where attackers leverage their foothold to
achieve malicious goals, primarily data exfiltration. Data exfiltration is the unauthorized transfer of
sensitive information - such as intellectual property, financial records, or personal identifiable information
(PII) from a victim's network to an attacker-controlled server. This can be executed through various vectors,
including outbound emails, downloads to insecure devices, or direct uploads over network protocols.

To defend against such attacks, organizations deploy security controls like the F5 Web Application
Firewall (WAF). The F5 WAF operates as a filter between a web application and the internet, inspecting
HTTP/S traffic for known attack patterns, such as SQL injection (SQLi) commands, cross-site scripting
(XSS) tags, or system commands. Its primary functionality is to block requests containing these malicious
signatures in the URL, headers, or body.

However, a significant challenge exists: many WAFs, including legacy or misconfigured F5
deployments, rely heavily on static rule sets. They check for predefined patterns but often lack the context
to understand the intent behind an obfuscated payload. This paper presents a methodology demonstrating
how an attacker, having already gained a foothold on a web server (e.g., through a vulnerable web
application), can bypass F5 WAF's static rules to execute commands and exfiltrate data by strategically
encoding the entire communication channel.

2.Methodology.

This methodology assumes the attacker has already achieved initial code execution on the target server,
for instance, via a remote file inclusion (RFI) or a deserialization vulnerability. The goal is to interact with
the underlying operating system to locate and exfiltrate sensitive data without triggering the F5 WAF. The
core of the bypass technique lies in the dual-layer obfuscation of both the outgoing commands and the
incoming data.

89



Modern Challenges and Achievements in Information and Communication Technologies - Batumi 6-7 October 2025

1. Bypassing the HTTP Request with Multi-Layer Encoding
An attacker cannot simply send a command like "cat /etc/passwd" in a POST request, as the WAF will

easily flag and block it. Instead, the command must be disguised.

Oops! Something went wrong.

The requested resource could not be accessed at this time.

If you believe this is an error, please contact support and provide the following reference ID:

Ref ID: 1545430518 [ NG

Go Back

1. Command Execution: The attacker aims to run a system command, such as "cat /etc/passwd", to

list files in a sensitive directory.

2. Encoding Pipeline: The command is passed through an encoding pipeline on the attacker's

machine before being sent to the compromised server.

Step 1: Base64 Encode: The command "cat /etc/passwd" is first Base64 encoded.

Result: "Y2F0IC91dGMvcGFze3dk"

Step 2: Reverse the String: The Base64 string is then reversed.

Result: "kd3czFGevMGdI9CIOF2Y" (Note: The reversal makes the string unrecognizable to

Base64 decoders and pattern matchers).

e Step 3: Convert to Hexadecimal: The reversed string is finally converted to a hex string.
— Result: "6b64336372464763764d47646¢39434930463259"
3. Crafting the Malicious Request: The attacker places this final hex payload into an HTTP

parameter that the compromised server will process. For example:

| 3d3d67506c4a486376776a43756¢325a7678326275396962704a3263766f4465756¢325a753969597
| 5a757067627064326273396d6276345761694¢334¢3638694f36497a4¢36497a4e36676e4f7731576+
| 544d36676e4f6c786d59704e6e62687067627064326273396d6276345761694¢334¢367757637a6c5

35316d43756¢325a7678326275396962704a3263766f445a775248646f39535a794647617a3969637

| 34¢c366b6e62764a48616a3969597078324c79466d64766f6a4f316b544136675441356f4465366b6¢6!
| 6f6a4135676a4f35676a4f34704465705a47647a3947634b3457616¢3947627635324c756¢6d597a39

704a485536517a4e36517a4¢36676e4f6b6832637a7067627064326273396d6276345761694e334c3
7627064326273396d6276345761694¢334¢c3638694{7a566e596755325a684e33636¢314749745647

The F5 WAF, performing a static check, sees only a benign-looking hex string. It does not match any

known command signatures (Is, cat, /etc/passwd), so the request is allowed to pass through.

2. Processing and Decoding on the Compromised Server
The vulnerable application on the compromised server must be modified (or already possess the

functionality) to process the payload parameter. A small piece of malicious code executes the following:

90

1. Receive the hex payload: "6b64336372464763764d47646c39434930463259"
Decode it from hex back to a string: "kd3¢zFGevMGdI9CIOF2Y"

Reverse the string to recover the Base64: "Y2F0IC91dGMvcGFzc3dk"
Base64 decode it to recover the original command: "cat /etc/passwd"

kv

Execute the command on the server's operating system.



0565370Mm37 3odm333900 s Jom§a3900 06xz3MMASE0YM @ L3M3Y603sgom &aJbmmmangxddo - d300do 6-7 MEGMAdyMo 2025

3. Exfiltrating Data and Bypassing the HTTP Response

The WAF also often inspects outbound responses for signs of sensitive data (e.g., database dumps,
password files). To bypass this, the same obfuscation principle is applied in reverse.

1. The server captures the output of the command "cat /etc/passwd".

2. Encoding Response Pipeline (Base64 Encode -> Reverse -> Hex).

3. The resulting hex string is placed into the HTTP response body and sent back to the attacker.

4. The F5 WAF sees a hex stream, not plaintext sensitive data, and allows the response to pass.

The attacker receives the hex payload, decodes it through the reverse pipeline (Hex -> Reverse ->

Base64 Decode), and views the stolen data in clear text.

Recipe ~ama Input + 0Oz 0 =

3d3d67586c4a486376776a43756c325a7678326275396962704a3263766T4465756¢325a75396959
7078324c79466d64766f6a636C5a6e636c4e48496956326467676e6270646d543651544F356F7ade
356b6a4f34704465756c325a757067627064326273396d6276345761694e334c3638694136497ade

From Hex

f:u‘;ollw 36497a4e36676e4f773157646b42335938784161723466d59763457616939694f6c786d59704e6e62
6839535a7439476176616a417741444d7861444d7741544d36676e4T6c786d59704e6e6268706762
7064326273396d6276345761694e334c367757637a6c58627649576173396963685a334c3649585a

Reverse ~ QN 324a585a54426951454657617946575436636a4d36636a4d36676e417346336335316d43756¢325a
7678326275396962704a3263766T445a775248646139535a794647617a3969637a56334¢36554761

By 6a46476342704441306T4441306F4465365547616a464763687067627064326273396d6276345761
Character 694e334c366b6e62764a48616a3969597078324c79466d64766T6a4T316b544F3667544F35674465

366b6e62764348616a7@67627064326273396d6276345761694€334366758616d5233637642334¢
73393262774e334c79466d64766F6a4135676a4135676a4134704465705a47647a3947634b345761

mc 2968 = 1 Tr Raw Bytes ¢ CRLF (detected)

From Base64

Alphabet

A-Za-20-9+/= " Output RO m::

<pre>root:x:@8:@:root:/root:/bin/bash

Remove non-alphabet chars |:] Strict mode bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm: /sbin/nologin
lp:x:4:7:1p:/var/spool/lpd:/sbin/nologin
sync:x:5:@:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:@:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nolegin

9.Discussion.

The success of this technique highlights a critical weakness in security controls that depend solely on
static pattern matching. The F5 WAF, in this scenario, is effectively blind to the attack because the malicious
intent is hidden behind a layer of encoding that is trivial for an attacker to implement.

This method is effective because:

e It Obfuscates Signatures: The static rules looking for "cat /etc/passwd" will not trigger on a hex-
encoded and reversed string.

e It Leverages Legitimate Functions: Encoding like Base64 and Hex are widely used in legitimate
web traffic, making it difficult to block them outright without causing false positives.

o It Targets the Post-Exploitation Phase: The attack assumes a compromised endpoint, shifting the
focus from perimeter defense to the integrity of the application logic itself.

The limitations of this approach are primarily on the attacker's side: it requires a non-interactive,
command-and-response cycle, which can be slower than an interactive shell. Furthermore, the need for a
custom decoder on the server implies a persistent backdoor or the ability to inject code repeatedly.

From a defender's perspective, this underscores that a WAF is not a silver bullet. The proposed solutions
must involve a defense-in-depth strategy:

91



Modern Challenges and Achievements in Information and Communication Technologies - Batumi 6-7 October 2025

e Dynamic Analysis: Next-generation WAFs should incorporate dynamic analysis, which involves
decoding and de-obfuscating parameters in a sandboxed environment to inspect their true content before
allowing the request to proceed.

e Parameter Monitoring and Expectation of Values: Applications should enforce strict input
validation. If a parameter like user_id is expected to be an integer, any value containing Base64 or hex
characters should be rejected outright.

e Behavioral Analysis and Anomaly Detection: Security Information and Event Management
(SIEM) systems and Intrusion Detection/Prevention Systems (IDS/IPS) should be tuned to detect anomalies.
For example, a web server process suddenly spawning a cmd.exe or bash shell and performing large
network transfers is a high-fidelity alert, regardless of the content's encoding.

4. Results.

When tested in a controlled lab environment simulating a basic F5 WAF deployment with common
OWASP ModSecurity Core Rule Set (CRS) signatures, the multi-layer encoding technique proved highly
effective. The WAF failed to block any of the exfiltration attempts.

e Request Bypass: Commands for directory listing, file reading, and network enumeration were
successfully encoded and executed without triggering WAF blocks.

e Response Bypass: The exfiltration of sensitive files, including a simulated "/etc/passwd" file and a
small database, was successfully hidden within the HTTP response. The WAF's data loss prevention (DLP)
features, configured with static patterns, did not identify the encoded data as a threat.

e Contrast with Plaintext: As a control, plaintext commands and responses were immediately
blocked by the WAF, confirming that the encoding was the critical bypass factor.

The results clearly demonstrate that static WAF rules are insufficient to protect against a determined
attacker in the post-exploitation phase.

5. Conclusion.

The post-exploitation phase remains a critical window of opportunity for attackers and a significant
challenge for defenders. As demonstrated, the static analysis performed by many traditional WAFs,
including F5, can be systematically bypassed through strategic payload obfuscation. The simple yet effective
technique of chaining Base64, reversal, and hex encoding provides a clear path for data exfiltration,
rendering the WAF transparent.

Defense, therefore, must evolve beyond signature matching. A proactive security posture requires the
implementation of dynamic analysis, strict application input validation, and robust behavioral monitoring
to detect the anomalous activity that signifies a post-exploitation process, even if the communication channel
itself is encrypted or encoded. The battle has shifted from merely inspecting content to understanding
behavior and intent.

To further this research and explore the evolving arms race between attackers and defenders, the
following avenues will be pursued:

e Test with Custom Encryption Algorithm: Implementing a simple, custom XOR or substitution
cipher for command and data obfuscation to bypass WAFs that decode common schemes like Base64.

o Test with Asymmetric Cryptography: Using a public key to encrypt commands on the attacker's
side, with the compromised server holding the private key for decryption. This would make the traffic
impossible for the WAF to decipher without the private key.

e Test with Remote Commanding: Utilizing fully-featured Command and Control (C2) frameworks
that natively support sophisticated traffic encoding and encryption (e.g., Meterpreter, Cobalt Strike)
against updated WAFs with behavioral analytics.

o Interactive Shell: Developing methods to establish a fully interactive reverse shell channel where all
keystrokes and responses are encrypted using the described or more advanced methods, bypassing
WAFs that monitor for sustained, encrypted, or jumbled traffic patterns.

92



0565370Mm37 3odm333900 s Jom§a3900 06xz3MMASE0YM @ L3M3Y603sgom &aJbmmmangxddo - d300do 6-7 MEGMAdyMo 2025

F5 WAF-ob 23900 53¢s 30L@-9Ju3em<95@ 5300l oMmls
9mbs3gdgdol gduzomm@®msgoolbmazols
53056000 30Bb0ysME0, ¢35 dmbos, 0gos dmbos

Lodomm39emb 39dbo3mMo MboggMbodgdo

bichnigauri av@gtu.ge, shonia@gtu.ge, iliashoniafr@gmail.com
69bodg

300963939308 3mbE-9JL3sESE00L BsBOTO 3089MHTBIT539930 50F9396 530560 LodMm-
@wmm doBbgdL, MMIwgdor oMo Bm3MLoMgdMwos 3609369wm3zs60 dmbso3gdgdol gduigown-
A®5305%9. dombgogz5 0doby, MMI 390 5303530900l Firewall-goo (WAF), 9s535¢00msc,
OMamM0395 F5 Networks, 30030399 00305330L 39656 Hotr3mopqbl. 3500 ©odm30@gdegds
GOG3N s bgwdmfigMsby ©sx3dbgd sdmBYbsbg dgodergds 3609369 mgzsbo o 3-
39000L 30BY)Ho FobEIL. gb LEIG0S 033193l 3M5JBH03M FgoMEMEMmosl F5 WAF o330l
33960l s3Wom, Goms MBOHMb3gymBowo oyml dmbs3gdms 9139dBHWMO  9JuBoGHMSE0S
Lofigolbo  3m33MMgEH0M9d0L 99909y. GH9dbozs ImoEsgl IMoz5¢dMm0sbo 963m©oMmgdol Liggdols
(Base64, Reversal oo Hexadecimal 3:@0693s), ®m3¢qd03 3odm0ygbgds Gmm s 0053053b3gerols
0635699909 HTTP 9mobmgbsdo, siggg 9m3smvye dmbsi3gdgdg HTTP 3sbvmbdo. gl 36mglo
91839JAHMO9© Bo6ogl 35369 d6Mdsbg0gdL 19305330l LASGHO3MMO Fglgdol 6530M9gdgd0LY. LEs-
0530 ©YGHIWIMS JBBOW 0 9EH3MOM0Z30 TJNMEMEMA0, LAIG03OO0 B obol 0sb-
©594Moo d9bwm3900 WAF-90d0 @5 (omdmagbowos 3m@gbzom®o gow0sfgy39@owgdgdo
0530533060300, 3500 Mol 0H6530NHO BB, 35659xGHMJOOL 350305 WS J3930M0
36mBoe09dol 508MBYbs. ©s33bs boBL ML (33500 LOBOPHYMS WSBETSBEAL s 2305~
35DmBL Lodmdsgerm 33eg30L J0ToMm0I)EgdIdL, MHMYMOOESS FMMYIIMo ©sFogBzMOL s SLO-
39GH00 3003EMYM5300L gsdmyqbgds dmbs3gdgdol »RMm ©sbzgfowo ybadom gdugzow@-
65300LmM30U.

153356dm odyzgdo: dmbsg8900L gduBoww GHMs30s, 30bE-9Ju3wwYsGSE0s, F5 WAF, 399 s3¢o-
3930900L Firewall-ob 23960l 53w, 96306905, 0xgMm305, 3009OMLIBOMLMYDS, oOMZ> O
3MbGHO™o, C2, LESG03MMO B0, PObsFoMGmO sb5E0Bo, SIEM, IDS/IPS.

References:

1. A. Bichnigauri, I. Kartvelishvili, L. Shonia - “Development and implementation of a model of an effective
mechanism for preventing phishing and malicious code websites in a web browser environment”,
Georgian Technical University International Scientific-Practical Conference “Modern Challenges and
Achievements in Information Technologies - 2023”

2. A. Bichnigauri, O. Shonia - “Means for detecting IoT devices in a local network to ensure their
cybersecurity”, Scientific Works. Automated Control Systems. Ne 1(32), Vol.1. Tbilisi, 2021

3. A. Bichnigauri, O. Shonia, T. Kaishauri - "Detecting Suspicious Domain Names for Cyber Threat
Identification Using CTL Technology", International Scientific-Practical Conference "Innovations and
Modern Challenges - 2022" dedicated to the 100th anniversary of the Georgian Technical University and
the 65th anniversary of the Faculty of Information Systems, Tbilisi, 2022

4. OWASP CRS: https://owasp.org/www-project-modsecurity-core-rule-set/

5. F5 Networks, "What is a Web Application Firewall (WAF)?", https://www.f5.com/glossary/web-
application-firewall-waf

6. MITRE ATT&CK, "Obfuscated Files or Information - T1027", https://attack.mitre.org/techniques/T1027/

7. MITRE ATT&CK, "Exfiltration - T1020", https://attack.mitre.org/techniques/T1020/

93



