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1.  INTRODUCTION

Scientists continue to strive to create medications that
have a selective effect on targeted sites (organs, tissues,
cells etc.) only. Drug packaging into nanoparticles of
different selectivity may provide one of the solutions to
this challenge, due to the improved side-effect and toxicity
profiles of these formulations. Nanoparticle-enclosed
medications do not undergo structural changes and are
delivered to damaged tissues without any chemical
modification [1–4]. Moreover, different nanoparticles
allow the enclosure of a wide variety of chemicals and
biologically active molecules (hormones, proteins, DNA,
antibodies etc.). Some of these currently in use clinically
show remarkable treatment efficacy [5–8]. Phospholi-
posomes, due to their biosafety (no negative effects on
humans), are frequently used in nanosystems [9–11].

Published literature indicates that encapsulated drugs
are more effective than the medicine alone. For example,
experiments carried out with animals with cancer revealed
that liposome-encapsulated doxorubicin circulates in an
organism unchanged for extended intervals. The liposome-
encapsulated doxorubicin also yielded decreased lung
cancer growth and metastasis when used in a clinical
setting. Using the liposomes allows treatment to be more
effective, with less toxicity [12–15].

Different methods currently used to make liposomes
allow their preparation with different chemical compositions
and physical properties (e.g., size, number of lamellae,
electrostatic surface potential etc.) [16]. Incorporation of

both hydrophobic and hydrophilic medications into lipid
vesicles can be achieved [17–19]. Degradation of liposomes
occurs in the same way as biological membranes, without
having negative effects on the host organism.

Passive and active methods of drug incorporation
into lipid vesicles are well known. The passive method of
complex liposome preparation involves using an organic
solvent to dissolve the lipids and drug molecules. After
shaking and evaporation of the solvent, a thin lipid–drug
layer is formed, which is then dispersed in water and
the dispersion extruded to create vesicles of the desired
size, with the drug molecules incorporated within them
[20–22]. With the active method, medications are
incorporated into preformed liposomes. For this method,
however, it is necessary to choose liposomes able to
absorb drug molecules [23].

In this paper we present a novel technology by which it
is possible to incorporate a wide variety of chemical
substances into liposomes, in order to facilitate their delivery
to target sites. Dipalmitoylphosphatidylcholine (DPPC) and
dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA) phos-
pholipids were used as the drug delivery systems. With a
simple adjustment, this technology allows incorporation of
small as well as large hydrophobic and hydrophilic molecules
into a liposome. Additionally, the technique is faster and less
expensive than those already well established. The
technology presented is based on calorimetric evaluation
after temperature-induced structural changes of the DPPC
and DPPA liposomes (vesicles).
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For preparation of artificial vesicles it needs to
mention about usage of cholesterol molecules, which are
included in structure of almost all natural cell membrane.
Cholesterol gives the rigidity of natural membrane,
occupying the space between the hydrophobic tails of the
lipids molecule and not allow them to bend. Also
cholesterol prevents movement of polar molecules
through the cell membrane, which is very important for
preparing a complex liposomes.

2.  MATERIALS AND METHODS

The mixture of hydrophobic biologically active
substances (the water-insoluble drugs, cholesterol) and
lipids—DPPC and DPPA (Lipoid, Newark, New
Jersey)—(the quantity of which is about 3 mg) should be
dissolved in 50 µL ethanol (at room temperature)
followed by intensive shaking. In the case of hydrophilic
biologically active substances (the water-soluble drugs,
metal ions) they and the lipids (about 3 mg) should be
dissolved in 50 µL water (at room temperature) followed
by intensive shaking. In next step, in both cases, 1 mL of
water heated to 70 °C is added to the above-mentioned
mixtures, and after 2–3 min vigorous mechanical shaking
the complex liposomes are formed. At this stage the sizes
of the liposomes are not uniform. In order to equalize the
liposome diameters, as a final step the suspension of
complex liposomes is extruded through a nanoporous
membrane (Fig. 1).

Calorimetric measurements were carried out with a
DASM-4A (Pushchino, Russia) instrument.

Vesicle size measurements were carried out with a
(Zetasizer (Malvern Instruments Ltd, Malvern, UK).

In order to evaluate the technology, cholesterol
molecules, calcium ions and gold nanoparticles were
incorporated into the liposomes. Since cholesterol is
almost insoluble in water, it requires several steps to
incorporate it into the structure of the liposomes. For this
purpose we prepared combined liposomes: 3.1 mg of
DPPC and 0.8 mg of cholesterol (molar ratio is 2:1) were
dissolved in 50 µL ethanol, followed by intensive shaking,
and then 1 mL of water heated to 70 °C was added. After
vigorous shaking for 2 min, a liposomal suspension was
obtained without cholesterol aggregates. The suspension
was extruded through a 200 nm porous membrane to
obtain vesicles of desired dimensions, viz. of the optimal
size for effective uptake by cells.

In order to incorporate Ca into the vesicles, CaCl2
was chosen as the calcium-containing salt and DPPA as
the lipid due to its higher thermal stability. 0.8 mg CaCl2
and 3.1 mg DPPA (molar ratio is 1:1.6) were dissolved in
water at 70 °C, heated to 80 °C, and vigorously shaken
for 2 min, followed by extrusion of the liposome
suspension through a 200 nm membrane filter.

For preparing liposomes with incorporated gold
nanoparticles, the method of Turkevich et al. and Frens
[31, 32] was used to prepare 24 nm gold nanoparticles
beforehand. 3 mg DPPA was added to 1 mL of a 0.54 µM
suspension of gold nanoparticles of diameter 24 nm. The
obtained suspension was heated in an aqueous bath at
80 °C for 2 min with vigorous shaking, and then extruded
through a 200 nm porous membrane. The colour of gold
nanoparticles depends on their diameter: small particles
(< 40 nm) are red, and larger ones (> 50 nm) are blue [27,
29, 30]. At the end of our process the colour of the
suspension had become blue, indicative of the incorporation
of gold nanoparticles into the liposomes.

3.  RESULTS AND DISCUSSION

Preparation of 200 nm complex DPPC–cholesterol
liposomes takes less than 30 min (instead of the 3.5 hours
required with the already established methods).

Published data suggest that the phase transition of
pure DPPC liposomes takes place at approx. 42 °C
[24–26]. Fig. 2 shows our calorimeter date from pure
DPPC liposomes, showing their change of heat capacity
(ΔCp) during the phase transition. The existence of ΔCp
during the phase transition indicates that the vesicle
structure is opened. The change of Cp can be interpreted
as a consequence of the entry of water molecules into
the hydrophobic part of the liposome. This mechanism

Figure 1. Schemata of the liposome preparation technology:
1. Incorporation of hydrophobic molecules into the liposomes:
a, mixture of hydrophobic molecules and DPPC in organic solvent;
b, final complex vesicles.
2. Incorporation of hydrophilic molecules into the liposomes: a,
mixture of hydrophilic molecules and DPPC in water; b, final
complex vesicles.
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should provide a pathway allowing a target hydrophobic
molecule to be incorporated into the hydrophobic part of
the liposome. After cooling the suspension back to room
temperature, the vesicles revert to their original structure,
trapping the target molecules inside the liposome. During
the first step it is impossible to get DPPC–cholesterol
liposomes without using an organic solvent. The calorimetric
curve obtained using water as a solvent (Fig. 3, curve a) is
almost the same as for pure DPPC (Fig. 2), i.e. particularly
narrow and sharp, which indicates that the incorporation of
cholesterol molecules did not occur, while the calorimetric
curve of complex DPPC–cholesterol liposomes prepared
by using an organic solvent (Fig. 3, curve b) is indicative of
incorporation, showing the necessity of organic solvent
during preparation of the liposomes.

Fig. 4, curve a shows the calorimetric trace of
DPPA–cholesterol liposomes prepared in water during
melting; we see that the phase transition occurs at 66 °C.
However, during the melting of the DPPA–cholesterol
(molar ratio 3:1) suspension, in which the liposomes were
first dissolved in organic solvent, calorimetry revealed
that the cholesterol molecules are incorporated into the
DPPA liposomes at 61 °C (Fig. 4, curve b).

Figure 2. Dependence of heat capacity on temperature for pure
DPPC liposomes.

Figure 3. Dependence of heat capacity on temperature for
DPPC–cholesterol liposomes: a, DPPC–cholesterol liposomes
prepared in water; b, DPPC–cholesterol liposomes prepared
using organic solvent (ethanol).

Figure 4. Dependence of heat capacity on temperature for
DPPA–cholesterol liposomes: a, DPPA-cholesterol liposomes
prepared in water; b, DPPA–cholesterol liposomes prepared
using organic solvent (ethanol).

It is easier to package hydrophilic substances into
liposomes by this technology, since the interaction
between the lipids and chemicals of a polar nature occurs
in an aqueous environment and there is no need to use
organic solvent. Considering that in recent times calcium-
containing medications are used very frequently, it may
be serviceable to incorporate hydrophilic calcium-
containing molecules into liposomes. Our experiments
with CaCl2 and DPPA show that the heat absorption peak
is different from that of pure DPPA liposomes (Fig. 5A),
which indicates the presence of calcium inside the DPPA
liposomes (Fig. 5B).

When discussing novel methods of preparation of
these types of liposomes, it is important that they are able
to incorporate substances not only based on their physical
properties but also based on their size. Nanoparticles made
from gold, silver etc. are already used for the treatment
of various diseases. Gold nanoparticles incorporated into
liposomes are more effective for both diagnostics and
treatment compared to gold nanoparticles alone [27, 28].
The enhanced treatment effectiveness may be because
the gold nanoparticles incorporated in liposomes are better
able to penetrate through damaged organ cell membranes.
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Our method also allows incorporation of gold, silver and
presumably other nanoparticles into lipid vesicles. Fig. 6
shows the dimensions of the DPPA–gold nanoparticle
liposomes in suspension. Calorimetric measurements
confirm the existence of complex DPPA–gold nanoparticle
liposomes (Fig. 7). The peak of heat capacity on the
calorimetric curve of complex DPPA–gold nanoparticle
liposomes significantly differs from the peak for pure
DPPA liposomes (Fig. 5A).

Figure 6. Size estimation from the Zetasizer for complex DPPA–
gold nanoparticle liposomes.
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Figure 5A. Temperature dependence of the specific heat
capacity of pure DPPA liposomes suspended in water. Heating
rate 2 K min–1.

Figure 5B. Temperature dependence of the specific heat
capacity of pure DPPA–CaCl2 liposomes suspended in water.
Heating rate 2 K min–1.

Figure 7. Calorimetric curve of complex DPPA–gold
nanoparticle liposomes.  Heating rate 2 K min–1.
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